Changes in membrane excitability and potassium currents in sensitized dorsal horn neurons of mice pups.

نویسندگان

  • Ivan Rivera-Arconada
  • Jose A Lopez-Garcia
چکیده

Rationally, an increased intrinsic excitability of dorsal horn neurons could be a factor contributing to alter the gain of the nociceptive system during central sensitization, however direct evidence is scarce. Here we have examined this hypothesis using current and voltage-clamp recordings from dorsal horn neurons in the spinal cord in vitro preparation obtained from mice pups of either sex. Cords were extracted from carrageenan-pretreated and control animals to allow for comparison. Dorsal horn neurons from treated animals showed significantly larger and faster synaptic responses. Synaptic changes started developing shortly after inflammation (1 h) and developed further after a longer-term inflammation (20 h). However, these neurons showed biphasic changes in membrane excitability with an increase shortly after inflammation and a decrease in the longer term. Concomitant changes were observed in transient (I(A)) and sustained potassium currents (I(DR)). Prolonged superfusion of naive spinal cords with NMDA led to a decreased neuronal excitability and to increased potassium currents. Results suggest that excitability plays a role more complex than expected during the process of central sensitization of dorsal horn neurons and that modulation of potassium currents may contribute to shape the changing states of excitability. The decreased excitability observed after long-term inflammation is interpreted as a homeostatic correction to an abnormal state of synaptic activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kv4.2 Potassium Channel Subunit Is Required for Pain Plasticity

A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal ...

متن کامل

ERK integrates PKA and PKC signaling in superficial dorsal horn neurons. II. Modulation of neuronal excitability.

Protein kinases belonging to the protein kinase A (PKA), protein kinase C (PKC), and extracellular signal-related kinase (ERK) families have been identified as key players in modulating nociception at the level of the spinal cord dorsal horn, yet little is known about the effects of these kinases on membrane properties of the dorsal horn neurons. PKA, PKC, and ERK exert inhibitory effects on tr...

متن کامل

Metabotropic glutamate receptor 5 regulates excitability and Kv4.2-containing K⁺ channels primarily in excitatory neurons of the spinal dorsal horn.

Metabotropic glutamate (mGlu) receptors play important roles in the modulation of nociception. Previous studies demonstrated that mGlu5 modulates nociceptive plasticity via activation of ERK signaling. We have reported recently that the Kv4.2 K(+) channel subunit underlies A-type currents in spinal cord dorsal horn neurons and that this channel is modulated by mGlu5-ERK signaling. In the presen...

متن کامل

ERK integrates PKA and PKC signaling in superficial dorsal horn neurons. I. Modulation of A-type K+ currents.

The transient outward potassium currents (also known as A-type currents or IA) are important determinants of neuronal excitability. In the brain, IA is modulated by protein kinase C (PKC), protein kinase A (PKA), and extracellular signal-related kinase (ERK), three kinases that have been shown to be critical modulators of nociception. We wanted to determine the effects of these kinases on IA in...

متن کامل

Suppression of potassium conductance by droperidol has influence on excitability of spinal sensory neurons.

BACKGROUND During spinal and epidural anesthesia with opioids, droperidol is added to prevent nausea and vomiting. The mechanisms of its action on spinal sensory neurons are not well understood. It was previously shown that droperidol selectively blocks a fast component of the Na+ current. The authors studied the action of droperidol on voltage-gated K+ channels and its effect on membrane excit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 15  شماره 

صفحات  -

تاریخ انتشار 2010